Transient Network at Large Deformations: Elastic–Plastic Transition and Necking Instability
نویسندگان
چکیده
We theoretically investigate the mechanical response of a transient network, which is characterised by dynamically breaking and re-forming crosslinks, and accounts for the finite chain extensibility (thus permitting the large deformations to be described). We build the general theory that incorporates the widely accepted empirical model of hyper-elasticity at large deformations (the Gent model) and naturally includes the microscopic behavior of transient crosslinks under the local tension applied to them. The full analytical expression for the elastic energy, or equivalently, the constitutive relation for arbitrary deformation is derived, and then the example of uniaxial tensile strain is focused on. In this case, we show that the mechanical response depends on the ratio of the imposed strain rate and the breakage rate of the crosslink: the system flows plastically (over a yield point) when the strain rate is much smaller than the breakage rate, while it remains elastic when the strain rate is much larger than the breakage rate. There is a broad range of this transition when the elastic and plastic regions of the sample coexist, and a resulting necking instability occurs. As a generalisation, we also consider a dual transient network, with two components penetrating each other, each having its own microscopic crosslink dynamics. The two networks add their local forces and share the deformation; we find that the network with a lower breakage rate determines the global deformation of the system.
منابع مشابه
Analysis of necking based on a one-dimensional model
Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradien...
متن کاملFinite-element Formulations for Problems of Large Elastic-plastic Deformation
Abstract-An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill’s variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventions finite element program, for “small strain” elastic-plastic an...
متن کاملAge-dependent modes of extensional necking instability in soft glassy materials.
We study the instability to necking of an initially cylindrical filament of soft glassy material subject to extensional stretching. By numerical simulation of the soft glassy rheology model and a simplified fluidity model, and by analytical predictions within a highly generic toy description, we show that the mode of instability is set by the age of the sample relative to the inverse of the app...
متن کاملPrediction of Instability in Planar Anisotropic Sheet Metal Forming Processes
In this paper instability of planar anisotropic sheet metal during a few forming processes is investigated for the first time. For this reason components of the constitutive tangent tensor for planar anisotropic sheets are developed. By using the above tensor location of necking is predicted. Direction of the shear band is also predicted using the acoustic tensor. A finite element program is pr...
متن کاملSurface oscillations and slow crack growth controlled by creep dynamics of necking instability in a glassy film.
We study experimentally the slow growth of a single crack in a glassy film of polycarbonate submitted to uniaxial and constant imposed load. Flame-shaped macroscopic zones of plastic deformation appear at the tips of the crack and the formation of these plastic zones involves a necking instability. In order to understand the crack growth dynamics, we study first the growth dynamics of the plast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016